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Abstract
The aim of this study is to review the available knowledge concerning the use of artificial Intelligence (AI) in
general in different areas of Forensic Sciences from human identification to postmortem interval estimation
and the estimation of different causes of death. This paper aims to emphasize the different uses of AI,
especially in Forensic Medicine, and elucidate its technical part. This will be achieved through an
explanation of different technologies that have been so far employed and through new ideas that may
contribute as a first step to the adoption of new practices and to the development of new technologies.

A systematic literature search was performed in accordance with the Preferred Reported Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines in the PubMed Database and Cochrane Central
Library. Neither time nor regional constrictions were adopted, and all the included papers were written in
English. Terms used were MACHINE AND LEARNING AND FORENSIC AND PATHOLOGY and ARTIFICIAL
AND INTELIGENCE AND FORENSIC AND PATHOLOGY. Quality control was performed using the Joanna
Briggs Institute critical appraisal tools.

A search of 224 articles was performed. Seven more articles were extracted from the references of the initial
selection. After excluding all non-relevant articles, the remaining 45 articles were thoroughly reviewed
through the whole text. A final number of 33 papers were identified as relevant to the subject, in accordance
with the criteria previously established.

It must be clear that AI is not meant to replace forensic experts but to assist them in their everyday work
life.

Categories: Forensic Medicine, Healthcare Technology
Keywords: deep learning, machine learning, artificial intelligence, forensic pathology, forensic medicine, forensic
sciences

Introduction And Background
Forensic Pathology (FP) is meant to aid in the correct and prompt administration of justice. Societies in
general, not just the judicial system, profit from an efficient and reliable medicolegal system. A properly
functioning medicolegal system supports crime detection and investigation and presents certified expert
witnesses in court, thus preventing crime (by establishing means of detection and punishment) and
accidents (such as substance abuse or road traffic accidents). FP is a medical specialization that straddles the
lines of both medicine and law [1]. This is the reason why FP followed all the medical and technological
innovations through the years from Hippocrates to modern laboratories and from the Industrial to the
Digital Revolution. Quite soon after the beginning of the latter, in 1956, John McCarthy first described the
term artificial intelligence (AI). AI refers to the use of technology and computers to simulate intelligent
behavior and critical reasoning that is comparable to that of a human being [2]. The evolution of this idea
introduced the term “Machine Learning” (ML), as a technique by which a computer can learn from data
without using a complex set of different rules. This approach is based on training a model from datasets. In
1986, Rina Dechter introduced the term “Deep Learning” (DL), as a subcategory of ML. In fact, DL is
considered a technique to perform ML inspired by the human brain’s neuron network [3]. Finally, the term
“artificial neural network” (ANN) was officially introduced in 2000 by Igor Aizenberg and colleagues [4].

An ANN is a massively parallel combination of simple processing units that can learn from their
surroundings and store the information learned within its connections [5]. ANNs are a type of computational
model inspired by the structure and functioning of biological neural networks, such as the human brain, and
are a fundamental concept in the field of ML. At their core, ANNs are composed of interconnected artificial
neurons (also known as nodes or units) organized into layers [6]. It is an umbrella term that incorporates
most of the models included in this systematic review.
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Convolutional neural networks (CNNs), a class of ANNs, are a type of DL model specifically designed for
analyzing visual data, such as images or videos. They consist of multiple layers of interconnected neurons,
including convolutional layers, pooling layers, and fully connected layers [7]. CNNs leverage the concept of
convolution, which involves applying filters to input data to extract meaningful features and capture spatial
relationships. Through a process of hierarchical feature extraction and representation learning, CNNs can
automatically learn discriminative features from raw input images [8]. The convolutional layers enable local
connectivity and weight sharing, reducing the number of parameters and allowing CNNs to efficiently
handle large-scale datasets. Due to their "full connectivity," these networks are vulnerable to data
overfitting [9]. CNNs can classify, multi-classify, and multi-label images [10]. CNNs have been extensively
employed in various tasks within the domain of Forensic Pathology. 

Backpropagation neural networks (BPNNs) are a type of ANN that uses the backpropagation algorithm for
training. Backpropagation is one of the most widely used algorithms for training feedforward neural
networks, particularly multilayer perceptrons (MLPs) [11,12].

Robust object detection frameworks (RODFs) refer to a set of algorithms, techniques, and methodologies
used to accurately and reliably detect objects in images under various challenging conditions, such as
occlusion, variation in lighting, scale, pose, and cluttered backgrounds. The goal of a robust object detection
framework is to achieve accurate and consistent detection performance across diverse real-world
scenarios [13].

The k-nearest neighbor (k-NN) algorithm is a simple and popular supervised machine learning algorithm
employed both for classification and regression tasks [14]. It operates based on the principle that similar
data points tend to have similar labels or values. Given a new data point, the algorithm will place it in the
multi-dimensional plain where all other known data exist and predict its class or value by looking at the k
nearest known data points.

Facing the AI technological revolution, FP is called upon to investigate possible ways to exploit the new
technologies at hand. This development represents a whole new chapter in medicolegal sciences that could
probably assist forensic pathologists in many everyday challenges. For example, external postmortem
findings (e.g. injuries, medical manipulations, etc.) or postmortem imaging findings could be recognized
through image processing software that employs AI technology. On the one hand, DL, and AI in general,
could lead to the automation of procedures that are time-consuming and accurately provide answers to
many questions that today could not be easily answered. On the other hand, the authors are very clear that
AI is not meant to replace forensic pathologists, but rather to assist them with data handling and
processing. 

To the best of the authors’ knowledge, there is only one similar systematic review concerning forensic
sciences, in general. In this paper by Galante et al., the authors attempted to demonstrate most AI
technologies that have been used in different forensic fields, in general, by simple quotation without
attempting any comparison [15]. 

The aim of this systematic review is to review the available knowledge concerning AI use in different FP
areas from human identification (HI) to postmortem interval (PMI) estimation and the estimation of
different causes of death (COD). The current study aims to emphasize the different uses of AI, especially in
FP, and to elucidate the technical part of AI in this field. This will be performed through an explanation of
the different technologies that have been so far used and through new ideas that may contribute as a first
step to the adoption of new practices and to the development of new technologies.

Review
Materials and methods
A systematic literature search was performed in accordance with the PRISMA (Preferred Reported Items for
Systematic Reviews and Meta-Analyses) guidelines to increase comprehensiveness and transparency of
reporting [16]. Published studies were found using a thorough search strategy of the PubMed Database and
Cochrane Central Library. There were neither time nor regional constrictions in our search and all the
included papers were written in English language. The terms used in the search were MACHINE AND
LEARNING AND FORENSIC AND PATHOLOGY and ARTIFICIAL AND INTELIGENCE AND FORENSIC AND
PATHOLOGY. References within the included articles were reviewed and the corresponding abstracts and full
articles were accessed in case they were relevant. Studies citing the included articles were searched through
the PubMed Database and their corresponding abstracts and full articles were also accessed if relevant. The
literature search was performed on February 01, 2024, when this project first took shape, and was held up to
April 09, 2024. The aim of this study is to create a database for the use of AI and ML methods that have been
tested so far in FP, which could be used as a first step for the development of new algorithms capable of
assisting forensic pathologists in their everyday tasks. Research articles without data related to AI and ML
algorithms, without data related to FP and/or with data that did not focus on humans, were excluded. The
definition of our keywords in the search is as follows. As human, we considered every human being
regardless of gender, age, and other population characteristics. Using technology and computers to mimic
intelligent behavior and critical thinking that is similar to that of a human being is known as AI, while ML is
a method that allows computers to learn from data without the need for a complicated system of
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principles [2]. Finally, the term Forensic Pathology covers every element of Forensic Medicine that is
currently practiced, starting with the medical CODs, certification of cause and manner of death, and autopsy
laws, among other things [1]. The information that was abstracted is mentioned below. The abstracted data
include author(s), publication year, region of the study, the aim of the study, modality, algorithm
architecture, results, limits, and recommendations of the study. Due to qualitative and summative nature of
this review and significant variations in study design and reporting, a meta-analysis and statistical
calculations were not reported. Forensic terminology is explained in Table 1, while AI models’ terminology is
explained in Table 2.

Term Description

Postmortem
interval
(PMI)

The interval between time of death and time of postmortem examination. It can be estimated through postmortem changes
on the deceased’s body, environmental conditions at the scene of death, and information on the deceased’s habits.

Human
identification

The process of identifying a deceased’s body. It can be accomplished using various methods, mostly through fingerprints,
DNA analysis, or panoramic radiographs.

Sex
estimation

The assessment of sex from skeletal remains. It can be accomplished through morphological (e.g., the subpubic angle of
the pelvis, ramus flexure in the mandible, etc.) or osteometric techniques.

Age
estimation

Assessment of age from bone examination. It can be applied to both the living and the dead through examination of bone
growth and dental development.

Maturity
development
estimation

Age estimation that can be accomplished through examination of dental development.

Diatom test
Diatoms are eukaryotic unicellular or colonial algae, which are detectable in water, air, and soil. The diatom test is based
on the assumption that diatoms reach the lung with the inhalation of liquid and disseminate through the bloodstream to
closed organs if cardiovascular activity exists. This test can be used for the diagnosis of drowning.

Heat-
exposed
bone

When a bone is exposed to heat, several changes occur that can be used as indicators of the fire temperature, duration,
and combustion circumstances. These changes refer mostly to color changes and other morphological changes (e.g., heat-
induced fractures, heat-induced dimensional changes).

Pericardial
effusion

The accumulation of excess fluid in the pericardial sac that surrounds the heart.

TABLE 1: Forensic Terminology
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Term Description

Artificial neural
network (ANN)

A computational model inspired by the structure and function of the human brain. It consists of interconnected
nodes (neurons) that process and transmit information.

Multilayer perceptron
(MLP)

A type of feedforward neural network with multiple layers of neurons, including input, hidden, and output layers. It
is widely used for various tasks, including classification and regression.

Backpropagation
neural network
(BPNN)

A type of neural network that uses the backpropagation algorithm for training. It adjusts the network’s weights to
minimize the difference between predicted and actual outputs.

Robust object
detection framework
(RODF)

A set of algorithms, techniques, and methodologies used to accurately and reliably detect objects in images under
various challenging conditions, such as occlusion, variation in lighting, scale, pose, and cluttered backgrounds.

k-nearest neighbors
(k-NN)

A non-parametric classification algorithm that assigns a class label to a data point based on the majority class
among its k nearest neighbors in the feature space.

Convolutional neural
network (CNN)

A specialized type of neural network designed for image recognition and processing tasks. It uses convolutional
layers to automatically learn hierarchical patterns and features from images.

Supervised learning
(SL)

A machine learning paradigm where the model is trained on labeled data, with input-output pairs, to learn a
mapping from inputs to desired outputs.

Clustering (CL)
An unsupervised learning technique where data points are grouped into clusters based on similarity. It helps
discover hidden patterns and structures within data without labeled examples.

TABLE 2: AI Models' Terminology

Results
A search of 224 articles, from the PubMed and Cochrane Central Library databases was performed. It is
important to highlight the fact that the Cochrane Central Library database did not contain any articles
meeting the above-described criteria. In addition, seven more articles were extracted from the references of
the initial selection of articles, that were to be accounted for in the literature review. All the above-
mentioned articles were thoroughly studied. A total number of 145 articles were checked, through their title
and abstract. After excluding all non-relevant articles, the remaining 45 articles were thoroughly reviewed
through the whole text. After the whole text study was concluded, a final number of 33 papers were
identified as relevant to the subject, in accordance with the criteria previously established. Finally, quality
control was performed using the Joanna Briggs Institute (JBI) critical appraisal tools. Using these tools, no
articles were excluded. Thus, a total number of 33 papers were included in the current systematic review. All
the critical appraisal methods were conducted by two reviewers independently. A PRISMA flow diagram
detailing the systematic search is presented in Figure 1. 
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FIGURE 1: PRISMA Flowchart.
PRISMA: Preferred Reported Items for Systematic Reviews and Meta-Analyses

The results, summed up in Table 3, present the following study characteristics: aim, modality, algorithm
architecture, outcomes, limitations, and recommendations. 

Author Region Year
Aim of the

Study
Modality

Algorithm

Architecture
Results Limits and Recommendations

Navega et  

al. [17]
Portugal 2018

Age

estimation  

Femoral bone

mineral density

obtained through

DXA

ANN (DXAGE)

DXAGE appears   to forecast death age as

well as the majority of traditional methods for

determining age in human skeletal remains

Limited to females of European

origin

Li et al. [18] China  2018
Age

estimation
Pelvic X-ray

Fine-tuned

convolutional

neural network

(CNN)    

Even for samples from people aged 19, 20,

and 21, the CNN can handle all possible cases

of automated skeletal bone age assessment

(i) It may not see practical

application in determining ages

over 22 years and (ii) less

accurate than deep learning

architectures based on hand X-ray

radiographic images

Garland et

al. [19]  Australia 2020

Identifying

fatal head

injuries

Postmortem

computed

tomography (PMCT)

Convolutional

neural network

(CNN)

Training dataset accuracy of 92.5% and

testing dataset accuracy of 70%

(i) having only 50 cases, (ii) using

only one transverse image from

the head PMCT scan as the input,

and (iii) grouping all different head

injury diagnoses as one single
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group

Lin et al.

[20]
China 2019

Determination

of causes of

death

pulmonary edema

fluid samples

Convolutional

neural network

(DeepIR)

 (i) prediction accuracies ranging from 0.8774

to 0.9167 - outperformed all the machine

learning-based classifiers, (ii) can easily be

optimized to achieve better accuracy, (iii) can

be constracted quickly and (iv) able to learn

rapidly and effectively from massive amounts

of spectral data

involving only five causes of

death: sudden cardiac death,

drowning, toxication, brain injury

and asphyxiation

Mohammad

et al. [21]    
Malaysia 2022

Segment the

maturity

development

of the

mandibular

premolars -

Dental

staging

Panoramic

radiographs

Keras-based

deep learning

convolutional

neural networks

(DCNN)

(i) training accuracy: 97.74, validation

accuracy: 96.63, and testing accuracy:

78.13% and (ii) Although moderate agreement

(Kappa value = 0.58) was achieved, no sign of

the model’s over-or under-fitting upon the

learning process was seen

(i) In order to select a better model

with better performance, the

methods used to optimize the

DCNN model can be extended by

adding some additional

hyperparameters and (ii) In order

to select a better model with better

performance, the methods used to

optimize the DCNN model can be

extended by adding some

additional hyperparameters

Boedi et al.

[22]
Belgium 2019

Age

estimation

Panoramic

radiographs

CNN

(DenseNet201)

Utilizing a DenseNet201 CNN increased the

previously reported staging accuracy

Correct stage allocation was

obscured by remaining

surrounding tissues

Yu et al.

[23]
China 2020

Identify the

deaths from

drowning

Diatom test

A robust object

detection

framework

(RetinaNet)

(i) average precision: 0.82 and average recall:

0.88, with a threshold of 0.5 (ii) possibly taken

into account as a part of the diatom test's

automated process

Limited data set

Zhou et al.

[24]
China 2019

Identify the

deaths from

drowning

Diatom test CNN

(i) accuracy greater than 90%, (ii) the CNN

model has learned specific morphological

hallmarks of diatoms instead of unwanted

background clutter and (iii) more rapid than the

traditional microscopic examination

Needs hardware upgrade and

larger number of training samples

Wärmländer

et al. [25]  
Sweden 2018

Estimating

the

temperature

of heat-

exposed

bone

Portable X-ray

fluorescence (pXRF)

and

spectrophotometer

linear model and

the k-nearest

neighbor (k-NN)

machine-learning

algorithm

Spectrophotometric color measurements

combined with machine learning methods can

be a viable tool for estimating bone heating

temperature

(i) Limited sample size, (ii) factors

such as burning time and the

amount of soft tissue present may

affect the color and (iii) screening

for chemical contamination may

be needed

Wilder-

Smith et al.

[26]

Switzerland 2022

Detection,

segmentation,

and

classification

of pericardial

effusions

Chest CT

Deep

convolutional

neural network

(nnU-Net)

(i) PEF detection sensitivity 97% (95% CI

91.48–99.38%) and specificity 100.00% (95%

CI 96.38–100.00%), (ii) Diagnosing

hemopericardium sensitivity 89.74% and

specificity 83.61% (AUC 0.944, 95% CI 0.904–

0.984), (ii) model and corresponding datasets

are publicly available and (iv) highly robust in

different protocols, institutions and patient

groups

(i) Trained on the latest

generation CTs from a single

scanner manufacturer at a single

institution, (ii) a larger case

number is needed and (iii) inter-

reader variability was worse

compared to reference-prediction

variability

Li et al. [27] China 2019
PMI

estimation

Human annual

cartilage samples

FTIR

spectroscopy

Cartilage could be considered an ideal matrix

for PMI estimation (slower degradation)

Need: (i) Larger number of

samples, (ii) vector machine

support and (iii) random forest

and deep learning

Cantürk and

Ozyılmaz

[28]

Turkey 2018
PMI

estimation
Eye images

Two feature

selection

algorithms

(LASSO and

Relief), two

classification

algorithms (k-NN

and LibSVM) and

two validation

methods (10-fold

and LOSO)

(i) very practical (ii) does not need expertise

and (iii) can be made available to forensic

experts even as a mobile application

Further studies are needed for

verification of the method
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Garland et

al. [10]
Australia 2020

PMI

estimation

Postmortem gross

images of visceral

organs

CNN

(i) the overall accuracies were >95% for both

training and testing datasets and (ii) F1 score

of >0.95 for all dissected organs

(i) identification of more organs is

needed and (ii) identification of

organs dissected at different

planes and by using different

dissection methods is needed

Toneva et

al. [29]
Bulgaria 2020

Sex

estimation
CT scans

Three data mining

algorithms: the

rule induction

algorithms JRIP

and Ridor, and

the decision tree

algorithm J48.

Two advanced

attribute selection

methods: Weka

BestFirst and

Weka

GeneticSearch

(i) all JRIP and Ridor sets of rules included

less than 10 cranial measurements, and only

the J48 decision trees used a greater number,

(ii) the accuracy of all models is nearly 90%,

(iii) the JRIP rule set generated on the

GeneticSearch selection dataset is 91.9 %, (iv)

Generated rules are easy to apply without the

need for any calculation and (v) standard ando

nonstandard measurements can contribute to

the correct sex estimation based on the

human cranium

NS

Zhang et al.

[30]
US 2019

PMI

estimation

Postmortem

microbiomes

collected by

swabbing five

anatomical areas,

sequenced and

analyzed

xgboost, neural

network and

random forest

(i) the xgboost method accuracy (74.5%–

87.6%), neural network accuracy (70.7–83.0%)

and random forest accuracy (73.6–86.3%) and

(ii) random forest was often comparable to

xgboost, but could underperform both

competing algorithms in specific instances (e.g.

PMI > 48 hours)

More studies are needed to

develop machine learning guided

molecular autopsies

Johnson et

al. [31]
US 2016

PMI

estimation

Postmortem

microbiomes

collected by

swabbing different

anatomical areas

k-nearest-

neighbor

regressor

(i) predicts the PMI of unknown samples with

an average error of ±55 accumulated degree

days (ADD) and (ii) useful over a longer period

of decomposition time, than this previously

described method

(i) multi-site study is now needed

to examine the role of local

environment and (ii) more data are

needed from a large-scale study

that will involve several swab sites

Fan et al.

[32]
China 2020

Human

identification

Panoramic

radiographs
CNN (DENT-net)

(i) Rank-1 accuracy: 85.16%, Rank-5

accuracy: 97.74%, (ii) high accuracy and

speed and (iii) it can be used without any

special equipment or knowledge to generate

the candidate images

(i) DENT-net was not yet

optimized for human identification

on mixed dentition, (ii) some detail

identification rules that draw

manual attention cannot be

learned by the present system

and (iii) application in cadavers still

must be evaluated

Porto et al.

[33]
Brazil 2020

Sex and age

estimation
Face photos

artificial neural

network classifier

(i) For the sex estimation of individuals over 14

years old, accuracy values higher than 0.85 by

the F1 measure, (ii) accuracy 0.72 for the F1

measure with an age interval of 5 years, and

(iii) For the age group estimation, the F1

measures of accuracy are higher than 0.93

and 0.83 for thresholds of 14 and 18 years,

respectively

(i) non-standardized (frontal)

recording of the human face, (ii)

need to include data for ages

older than the cutoff, and (iii)

Need to try to get results from

other countries and ethnicities

Liu et al. 

[34]
US 2018

Pericardial

effusion

localization

and

segmentation

CT scans

Cascaded

Coarse-to-fine

CNN

(i) accuracies are likely to be acceptable for

clinical use and (ii) this coarse-to-fine approach

can be applied to segmentations of other

organs on medical images

NS

Yang et al.

[35]
China 2019

Sex

estimation

Whole-skull CT

scans

backpropagation

neural network

(BPNN)

(i) Accuracy rate of the training stage:

97.232%, mean squared error (MSE): 0.01

and (ii) Compared with traditional methods, it

has stronger learning ability, faster

convergence speed, and higher classification

accuracy

Larger sample is needed to build

a model that could assess sex

from unknown bones

Liu et al.

[36]
China 2020

PMI

estimation

Microbial community

characterization and

microbiome

sequencing from

different organs (i.e.

brain, heart and

random forest

(RF), support

vector machine

(SVM) and

artificial neural

(i) The ANN model combined with the

postmortem microbial data set from the cecum

was the best combination with a mean

absolute error of 1.5 +/- 0.8 h within 24-h

decomposition and 14.5 +/- 4.4 h within 15-

day decomposition and (ii) reliable and

Need for a larger sampling time

frame
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cecum)
network (ANN)

accurate technology in PMI estimation

Kahaki et al.

[37]
Malaysia 2019

Age

estimation
Orthopantomography

deep

convolutional

neural networks

(DCNNs)

The technique can accurately and precisely

classify the images with good performance,

enabling automated age estimation

(i) Larger data sets are needed

with elderly patients and (ii)

anisotropic filtering in the early

stages of CNN

Ebert et al.

[38]
Switzerland 2017

Detection of

hemorrhagic

pericardial

effusion

Postmortem

computed

tomography (PMCT)

deep learning

image analysis

software (ViDi

Suite 2.0)

(i) two separate deep learning networks, one

to classify images into hemopericardium/not

hemopericardium, and one to segment the

blood content and (ii) The best performing

classification network classified all cases of

hemopericardium from the validation images

correctly with only a few false positives

Underestimates the amount of

blood in the pericardium

Zeng et al.

[39]
Japan 2023

Diagnosis of

fatal

hypothermia

Postmortem

computed

tomography (PMCT)

deep

convolutional

neural networks

(DCNNs)

They used the area under the receiver

operating characteristic curve (AUC) of the

system for evaluation, and a human-expert

comparable AUC value of 0.905, sensitivity of

0.948, and specificity of 0.741 were achieved.

ensemble multiple classifiers to

reduce the number of false

positives produced by any

individual feature. Also, by

adjusting the threshold of

classification probabilities, the

trade-off between sensitivity and

specificity can be optimized based

on the specific application.

Cheng et al.

[40]
USA 2024

human

gunshot

wound

classification

digital color images

(jpeg format) of

entrance and exit

GSWs

A ConvNext Tiny

deep learning

model

The model achieved an accuracy of 87.99%,

precision of 83.99%, recall of 87.71%, and F1-

score 85.81% on the holdout set. Correctly

classified were 88.19% of entrance wounds

and 87.71% of exit wounds.

Image collection and preparation

is very time-consuming

Dani [41] Hungary 2023
Time of Death

Estimation

Henssge’s formula

data

An SVM with a

radial basis

function (RBF)

kernel and

AdaBoost+SVR

estimated time of death accuracy of

approximately +/-20 min or =/-9.6 min,

respectively, depending on the SVM

parameters. The error in the predicted time

(tp[h]) was tp =/- 0.7 h with a 94.45%

confidence interval

Further testing with real data is

needed.

TABLE 3: Summary of Studies Applying Machine Learning in Forensic Medicine and Pathology.

Out of the 33 selected studies, seven were systematic reviews concerning AI use in more specific fields of
forensic interest (e.g. Forensic Anthropology, Forensic Odontology). These studies were excluded from the
table, as because of their nature (review articles), they did not present any new AI algorithm. Information
was collected from regions all around the world including Portugal, Bulgaria, China, Australia, Scandinavian
countries, and America.

Subcategorization by the Different Fields of FP

The 26 studies included in this systematic review could be subcategorized by the FP field they address.
Forensic Anthropology (FA) is the field of 9 out of 26 studies. Age and sex estimation are the subject of four
studies [18,22,37,42] and two [29,35] studies, respectively, while one paper introduced an algorithm able to
estimate both [33].

One study aimed to aid in HI through use of panoramic radiographs [32] and another presented a Keras-
based deep learning convolutional neural network (DCNN) that could segment the maturity development of
the mandibular premolars [21].

Ten out of 23 studies introduced algorithms that could assist in the estimation of the COD. One study
identified head injuries that could be fatal [19], while two papers presented an algorithm that facilitated the
automation of the diatom test, to be used for drowning identification [23,24]. 

Regarding more specific subjects, one study is relevant to the estimation of the temperature of heat-exposed
bones [25], while another one explores fatal hypothermia diagnosis [39]. Three studies aim to assist in the
detection, the segmentation, and/or the classification of pericardial effusions [26,34,38]. One study
introduces a CNN that could identify five specific CODs [20], while another one employs AI in wound
ballistics [40]. Moreover, six studies present algorithms that could assist in PMI [19,25,27,28,31,38]. Finally,
in the study by Dani et al. a new approach was proposed to determine the time of death through a support
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vector machine with a radial basis function kernel and adaptive boosting (AdaBoost) and support vector
registration [41].

A hierarchical clustering of the algorithms is depicted in Figure 2, while an illustration of the distribution of
research aims over time is depicted in Figure 3.

FIGURE 2: Hierarchical Clustering of Machine Learning Algorithms
Analyzed in This Study. The Sunburst Diagram Represents the
Hierarchical Clustering of Machine Learning Algorithms.
ML: Machine Learning; SL: Supervised Learning, CL: Clustering; CNN: Convolutional Neural Network; ANN:
Artificial Neural Network; BPNN: Backpropagation Neural Network; k-NN: k-Nearest Neighbor; RODF: Robust
Object Detection Framework; DLIAS: Deep Learning Image Analysis Software; OT: Other Techniques; FTIR:
Fourier Transform Infrared Spectroscopy.

Each algorithm is categorized based on its specific role within the machine learning domain, showcasing their
hierarchical relationships.
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FIGURE 3: Research Aims Over Time.
The horizontal axis represents the years, the vertical axis represents the specific aims of the studies, and each
data point on the graph corresponds to the number of papers focusing on a particular aim during a given year. The
colors in the diagram indicate the general categories of the tasks addressed in the papers.

PMI: Postmortem interval

Subcategorization by Algorithm Architectures 

As demonstrated in Table 3, different studies introduced different algorithm architectures. Analytically,
eleven studies built CNNs [10,18-22,24,26,29,32,34,37,39,40]. ANNs were provided by two studies [17,33].
One study employed a BPNN [11], one a robust object detection framework [23], and another a deep learning
image analysis software [38]. One applied Fourier transform infrared (FTIR) spectroscopy [27], in which the
authors used conventional learning methods to establish predicted models, and two were based on k-NNs
[25,32]. Finally, four studies applied more than one algorithmic architecture [28-30,36].

Convolutional neural networks: Li et al. presented a deep learning bone age assessment model based on
pelvic radiographs for forensic age estimation [18]. The model employed in this study consisted of a
pretrained AlexNet architecture, which was utilized for feature extraction [43,44]. Subsequently, three fully
connected layers were incorporated into the model, with sizes of 2048, 1024, and 1, respectively. This model
was compared with an existing cubic regression model. The results demonstrated that the deep learning
model achieved similar performance to the existing model. Similarly, Li et al. developed a deep learning
CNN model for forensic age estimation based on pelvic radiographs [18]. Their model was trained on a
dataset of 1,875 pelvic X-ray images from individuals aged between 10 and 25 years. They compared the
performance of their deep learning model to an existing cubic regression model based on ossification
staging methods and found that the DL model achieved performance on par with the existing model, with
mean absolute error and root-mean-squared error indicating comparable predictive ability. Furthermore,
Garland et al. [19] employed a CNN consist of sequential convolutional layers with filters of 32, 64, 128, and
128, utilizing a kernel size of 3x3 and rectified linear unit (ReLU [45]) as the activation function,
accompanied by corresponding max-pooling and dropout layers for distinguishing fatal head injury cases
from non-injury controls. The two output layers were configured with 256 and 2 units respectively,
employing ReLU as the initial activation function and softmax as the final activation function. 

Regarding the CODs, Lin et al. employed AI to analyze pulmonary edema fluid from forensic autopsies using
infrared spectroscopy combined with a CNN [20]. The researchers compared the performance of a CNN
model named DeepIR [46] with eight popular machine learning algorithms (SVM, Linear Discriminant
Analysis-LDA, etc.). DeepIR utilizes a CNN with an "Inception" module, which consists of four parallel
network structures with different convolutional and pooling layers. This module is claimed to enable the
extraction of both low and high-level features from one-dimensional spectroscopic data without introducing
additional computational complexity, thereby enhancing the network’s width and depth. Mohammad et
al. proposed a combination of image processing and machine learning techniques to segment the maturity
development of mandibular premolars [21]. For this task, a DCNN [47] model with 3x3 convolutional layers
with 64 nodes and two dense layers was utilized. Beodi et al. [22] aimed to improve the automated tooth
development staging in subadults by segmenting only the lower third molar in panoramic radiographs, using
a DenseNet201 CNN [13]. Yu et al. presented a deep learning-based approach for diatom search automation
in scanning electron microscopic images, aiming to improve the time-consuming process of the forensic
diatom test [23]. RetinaNet, a CNN-based one-stage object detection framework, was employed for this task.
The core of the system was a ResNet-101 [48] containing 101 computational layers and leveraged transfer
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learning by the model trained on ImageNet [49]. For the same task, Zhou et al. employed a model consisting
of five convolution nodes combined with 2 max pooling layers, followed by 11 stacks of inception modules
and a fully connected layer for the prediction [24]. Wilder-Smith et al. utilized an Encoder-Decoder
architecture CNN [50] for Automated Detection, Segmentation, and Classification of Pericardial Effusions on
chest computed tomography (CT) [26]. Garland et al. [10] employed a pre-trained CNN base using Xception, a
CNN 71 layers deep [51], swapped with an output layer that consisted of two dense fully connected layers of
256 and 11 (number of classification) units for the classification of gross postmortem images of dissected
organs. Fan et al. presented an automatic HI system named DENT-net, based on a customized CNN [32]. The
DENT-net model utilized a convolutional neural network architecture with four convolutional layers,
followed by max pooling layers and three fully connected layers for identification. The network employed
small 3x3 filters and a maximum of 128 filters in each layer. The second fully connected layer with 512
channels. Liu et al. [34] proposed a two-stage method using convolutional neural networks (hybrid neural
network-HNN [52] and U-Net [50]) for localizing and segmenting pericardial effusions in CT scans. Kahaki et
al. developed an age assessment method utilizing global fuzzy segmentation, local feature extraction, and a
DCNN [37]. The proposed architecture consists of multiple layers, including convolutional, rectifier,
normalization, pooling, fully connected, dropout, and softmax layers, which collectively perform input
processing, feature extraction, and classification with cross-entropy loss, resulting in a classification output
with four classes.

Artificial neural networks: Two of the studies [17,33] included in this systematic review employed such
networks. In particular, Navega et al. [17] proposed an ANN model based on a MLP [53], using one dense
(fully connected) layer with 128 neurons with the Adamax optimizer [54], to automatically extract
anthropological information, such as sex and age, from facial images. Porto et al. [33] employed a modified
general regression neural network [55], an ANN that attempts to mimic the associative memory, to model
the bone mineral density variables, into predictors of age at death.

Backpropagation neural network: Yang et al. trained a feedforward BPNN, developed in MATLAB, to
determine gender from 267 skull CT scans reaching 96% accuracy [35].

Robust object detection framework: Yu et al. employed a robust object detection CNN framework called
RetinaNet for automatic diatom detection in electron microscopic images [23].

k-nearest neighbors: Wärmländer et al. utilized k-NNs to determine the maximum heating temperatures of
burnt bones by their specular component included (SCI) color values [25]. Johnson et al. constructed a k-NN
regression, trained with a dataset from nasal and ear microbiome samples, that predicts the postmortem
interval (PMI) of unknown samples to within 55 accumulated degree days, or two days at an average
temperature of 27.5°C [31].

Discussion
The present systematic review aimed to review the available knowledge of the literature according to the
applications of AI in different areas of forensic interest. 

Sex and age estimation is a subject of particular interest, whenever the condition of the corpse does not
allow proper identification. Various studies demonstrated that different bony parts of the human body could
be employed for age estimation purposes. So far, two CNNs [18,22] and one ANN [17], which can estimate
age from pelvic x-rays, panoramic radiographs, and femoral bone DXA, respectively, exist. All three methods
demonstrated positive results with accuracy rates even, or greater than previously reported. Moreover, Porto
et al. introduced an ANN classifier that could estimate both sex and age through facial photography
processing [33]. Furthermore, data obtained from CT scans was used to train algorithms by two scientific
teams [29,35]. Both demonstrated positive results and increased accuracy. Fan et al. employed panoramic
radiographs to develop DENT-net (a CNN model) used for HI purposes [32]. Finally, Mohammad et
al. introduced a dental staging system [21]. 

The PMI estimation is another subject of particular interest, especially when the body is discovered in
various stages of putrefaction. Six studies managed to develop ML algorithms that determine PMI from
different dataset sources, such as cartilage samples [27], eye images [28], and postmortem gross images of
visceral organs [10], while 3 of them focused on postmortem microbiomes [30,31,36]. These studies
presented positive results and demonstrated that cartilage might be an ideal matrix for PMI estimation,
while images from different organs showed high accuracy. As for the microbiomes they were swabbed from
different anatomical sites and the microbial communities were characterized and sequenced. These data
were used to train AI algorithms that achieved high accuracy. 

The determination of the COD is naturally of paramount importance for FP. Any means, including the use of
AI technologies that can increase the accuracy of COD determination, are therefore considered extremely
important. So far, different types of AI algorithms have been trained to detect different death causes, such as
fatal head injuries with satisfactory training and testing accuracy [19]. Lin et al. introduced DeepIR which
uses data obtained from pulmonary edema fluid spectrochemical analysis to recognize various CODs, such as
sudden cardiac death, drowning, intoxication, brain injury, and asphyxiation [20]. Wärmländer et
al. developed a k-NN algorithm to estimate the temperature of heat-exposed bone, through portable X-ray
fluorescence and measurements [25]. Three studies, included in this systematic review, presented the
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detection and segmentation of pericardial effusions through CNN, using CT scan results as dataset
[26,34,38]. This approach allowed for faster and more accurate diagnosis of pericardial fluid pathology.
Concerning drowning cases, two studies [23,24], included in this systematic review, presented algorithms
that can identify diatoms and thus contribute to a more evidence-based COD determination. 

It should be noted that so far, available algorithms aim to detect only a fraction of any possible pathology
that could represent the COD. No such algorithm that encompasses the whole human pathology yet exists.
Evidently, such a task is extremely difficult to achieve.

Nevertheless, future AI applications may affect other forensic fields as well. Such fields may include
genetics, image analysis and recognition, and pattern analysis. Concerning forensic genetics, AI may assist
in overcoming limitations in techniques such as PCR through statistical software programs [56-62]. It could
also help by providing better electropherogram systems that could diminish or eliminate artifacts [63].
Furthermore, when direct comparisons with DNA and/or fingerprint databases are unable to provide a
conclusive match, AI may assist by estimating the age of an individual from crime scene biological
materials [64-66]. AI might also help by providing better results in DNA extraction and purification
methods [61,67-69], while recommendations have already been published for the developmental and internal
validation of probabilistic genotyping software [70-76]. 

Image analysis and recognition may be applicable to images obtained either through imaging examinations
(e.g. postmortem computed tomography (PMCT) or through digital photography. As already mentioned,
many studies included in this systematic review employ datasets from imaging
examination data [10,26,29,39]. Future research may provide the ability through analysis of PMCT data, to
automatically highlight all important findings and thus aid in the reductions of diagnostic oversights.
Relevant research is currently being performed for living patients, with promising results [77-81]. When
available, undoubtedly this research may find significant application in FP.

AI use in image analysis and interpretation is currently being researched for living patients in various
medical fields, ranging from ophthalmology [82] to histopathology slides [83]. Hopefully, in the future, an AI
algorithm will be able to identify postmortem findings (both gross and histopathological), thus limiting the
incidence of diagnostic mishaps and facilitating routine morgue operations.

Concerning AI application in pattern analysis, it should be noted that this specific field is probably the most
demanding. Pattern analysis may include recording of all forensic findings, their evaluation and subsequent
reliable COD proposal, but it may also encompass recognition of specific patterns that may lead to reliable
conclusions, especially in crime cases (degree of violence, estimation of fatal injury, etc). Nevertheless, the
latter requires the development of extremely large and reliable datasets to train such algorithms, should one
day they become available.

Most of the new technologies introduced by the studies included in this systematic review have limitations,
such as the requirement for larger sample and data sets, optimization for humans and especially for human
cadavers, as well as optimization for specific age groups and nationalities.

To summarize the results extracted by this systematic review, different AI methods have been employed to
assist routine forensic work. These algorithms managed to accomplish many tasks with satisfactory accuracy
and speed. However, many limitations exist. To overcome these limitations, further research is required,
involving creation of larger datasets and updated hardware.

Conclusions
The AI revolution has brought many changes in the different fields of medicine, including forensic
pathology. Different fields of this medical specialty could be assisted by AI and specifically ML algorithms.
FA, forensic dentistry, estimation of PMI, and COD are some of these fields. Most of the new technologies
introduced by the studies included in this systematic review have limitations. New studies, with larger
datasets and upgraded hardware might help to overcome these limitations. To conclude, this systematic
review emphasizes the use of AI in FP, by comparing the different technologies that have been used by now
and by providing technical information about these technologies. The authors strongly believe that this
study could be used as a guide and an inspiration for developing new algorithms, to automate different FP
fields. However, it must be clear that AI is not meant to replace the forensic experts but to assist them in
their everyday work life.
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